PHILOSOPHICAL TRANSACTIONS.

L. On the Circulation of Air observed in Kunpr's Tubes, and on some Allied Acoustical
Problems.
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EXPERIMENTERS in Acoustics have discovered more than one set of phenomena
apparently depending for their explanation upon the existence of regular currents of
air, resulting from vibratory motion, of which theory has as yet rendered no account.
This is not, perhaps, a matter for surprise, when we consider that such currents,
involving as they do circulation of the fluid, could not arise in the absence of friction,
however great the extent of vibration. And even when we are prepared to include in
our investigations the influence of friction, by which the motion of fluid in the neigh-
bourhood of solid bodies may be greatly modified, we have no chance of reaching an
explanation, if, as is usual, we limit ourselves to the supposition of infinitely small
motion and neglect the squares and higher powers of the mathematical symbols by
which it is expressed.

In the present paper three problems of this kind are considered, two of which are
illustrative of phenomena observed by FAraDAY.* In these problems the fluid may
be treated as incompressible. The more 1mportant of them relates to the currents
generated over a vibrating plate, arranged as in CHLADNI'S experiments. It was
discovered by SAvART that very fine powder does not collect itself at the nodal lines,
as does sand in the production of CHLADNI'S figures, but gathers itself into a cloud
which, after hovering for a time, settles itself over the places of maximum vibration.
This was traced by FARADAY to the action of currents of air, rising from the plate at

* “On a Peculiar Class of Acoustical Figures; and on certain Forms assumed by groups of particles
upon Vibrating Elastic Surfaces,” Phil. Trans., 1831, p. 299.
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2 LORD RAYLEIGH ON THE CIRCULATION

the places of maximum vibration, and falling back to it at the nodes. In a vacuum
the phenomena observed by SavarT do not take place, all kinds of powder collecting
at the nodes. In the investigation of this, as of the other problems, the motion is
supposed to take place in two dimensions.

It is probable that the colour phenomena observed by SEDPLEY TavLOR* on liquid
films under the action of sonorous vibrations are to be referred to the operation of the
aerial vortices here investigated. In a memoir on the colours of the soap-bubble,t
BrewstER has described the peculiar arrangements of colour accompanied by whirling
motions, caused by the impact of a gentle current of air. In Mr. TAYLOR’S experiments
the film probably divides itself into vibrating sections, associated with which will be
aerial vortices reacting laterally upon the film.

The third problem relates to the air currents observed by Dvorak in a Kunpr's
tube, to which is apparently due the formation of the dust figures. In this case we
are obliged to take into account the compressibility of the fluid.

[My best thanks are due to Mr. W. M. Hicks, who has been good enough to
examine the mathematical work of the paper. The results are thus put forward with
greater confidence than I could otherwise have felt. |

§ 1. In the usual notation the equations of motion in two dimensions are

ldp_ _du, o _ du_ du)
pde ar VYT Ty, L 1
L R M
pdy” "tV T T gy

and since the fluid is incompressible,

‘-Ai?f_;_* e e e s (2)

In virtue of (2) we may write

CZ\[/‘ dyr :
Eliminating p between equations (1 ) we get
ofduw dv\ d [du w du du da/ dv _I_U@
Vi ~ae dt dy d@ Ty )T\ ay )

du d(u‘“’+qﬂ) du  dv’
+ dx v( - )

Now

dy ~ de
v dv__ @+ du dv
UtV S g T (dg/ —dw>’

* Proc. Roy. Soc., 1878.
+ Edinburgh Transactions, 1866-67.
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and
duw  dv
,,,,, e
dy dx v,
so that
vy—t & w AV v dviy
ll‘t/dt"b_vdx udy"""'.(él)'

For the first approximation we neglect the right-hand member of (4), as being of
the second order in the velocities, and take simply

v <v%———~>¢ o e

The solution of (5) may be written®
y=¢+y, . . . L . o oo (6),

where

Vi, =0, <V _l%>gb2=0 R (4

We will now introduce the suppositions that the motion is periodic with respect to
x, and also (to a first approximation) with respect to . We thus assume that ¢, and
Y, are proportional to cos kx, and also to e¢*. The wave-length () along « is 2u/k,
and the period 7 is 2m/n. The equations (7) now become

<~—@%—o<$—%f%%w ),

by which ¢ and 4y, are to be determined as functions of y. If we write
N )

we have as the most general solutions of (8)
Yy=Ae W4+ Betv . . . . . . . . . (10),
Y,=Ce*v4De*v . . . . . . . . . (L)
With respect to the value of k', we see from (9) that it is complex. If we write
k*=DP? cos 2a, g_—..P2 sin 2a,

then
k=P cos a4 P sin o,

* Stokes “ On Pendulums,” Camb. Phil. Trans., vol. ix., 1850.
B 2



4 LORD RAYLEIGH ON THE CIRCULATION

In all the applications that we shall have occasion to make, an approximate value
of I’ is admissible. On account of the smallness of v, n/v is very large in comparison
with %% that is to say, the thickness of the stratum through which the tangential
motion can be propagated in time 7 is very small relatively to the wave-length \.
We may therefore neglect 4* in the equation

Ph— it n?
¥
and take simply
P=n/fr.
Again

. o . It
(sin @—cos )?=1— sin 2a=4%—,
n

so that the difference between cos a and sin @ may be neglected. We will therefore
write

F=B(l43) . « - o . . . .. (2,

where

/3:\/—2%...........(13).

We must now distinguish the cases which we have to investigate. In the first we
suppose that a wave motion is in progress in a vessel whose horizontal bottom
occupies a fixed plane y=0. We may conceive the fluid to be water vibrating in
stationary waves under the action of gravity, the question being to examine the
influence of the bottom upon the motion. If there are no other solids in the
neighbourhood of the bottom, we may put D=0, y being measured upwards, and
B being taken positive.

The conditions to be satisfied at y=0 are that « and v should there vanish. Thus

A+B4+C=0, —kA+4+iB—FC=0,
so that

p=C { — cosh ky—l-% sinh ky-{-e"“'y},
and

u=C{—k sinh ky+% cosh ky—Kke"7}.

At a short distance from the bottom, u=k'C. If we deuote by u, the maximum
value of u near the bottom, we have
kK C=u, ¢™ cos ke,
and then

. hky sinhky e
P=1, " cos kx{ —-Cosk, fy—l—smlz i +e—-k,—}

(14),
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' . k. ,
u=1u, " cos kx{ — sinh ky—+ cosh lcy-—e“’ﬂy} ... .. (1b),
v=1u, " sin koc{ = cosh ky+ sinh ky+ e"‘l’} .. . . (18).

These are the symbolical values. If we throw away the imaginary parts, we have
as the solution in real quantities by (12),

h &y
Y=1u, cos kx{ c;);\/; nt+18\/2 cos (nt— Mr-—,By)} . (17),
U="1, COS kx{ — Sﬂlrjlzky os (nt—3m)+ cosh ky cos nt—e cos (nt— ,By)} .. (18),
% cosh ky Pl

v=1, sin kx{— N R (nt— 471-)+ sinh ky cos ”H—B\/Z cos (nt-—iw—,ﬂy)} (19).

This is the solution to a first approximation. At a very small distance from the
bottom the terms in e™ become insensible.

Although the values of v and v in (18) and (19) are strictly periodie, it is proper
to notice that the same property does not attach to the motions thereby defined of
the particles of the fluid. In our notation u is not the velocity of any particular
particle of the fluid, but of the particle, whichever it may be, that at the moment
under consideration occupies the point , . If x4& y-+n be the actual position at
time ¢ of the particle whose mean position during several vibrations is «, ¥, then the
real velocities of the particle at time ¢ are not w, v, but

v
ut G G

and thus the mean velocity parallel to x is not necessarily zero, but is equal to the
mean value of

du
§+dJ

in which again

f:!u dt, n:_['v dt.

From the general form of w, viz., cos kx F(y, t), it follows readily that J’%f dt=0.

For the second term we must calculate from the actual values as given in (18), (19).

Thus
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n__fuosinkx{ kcoshky .-

—By
N B (nt—3m)+ sinh ky sin nt+"— sin (nt—tm— ,Bg/)},
v

k
n B2
k? cosh ky

8.2 cos (nt—2La) 4k sinh &y cos nt+ /2.8 ¢~ cos (nt—l—iﬂr—,@y)},

@— 0 Lx{
dy_uoc S

of which the two first terms may be neglected relatively to the third (containing the
large factor 8). The product of » and % will consist of two parts, the first indepen-

dent of ¢, and the second harmonic functions of 2nt. It is with the first only that we
are here concerned. The mean value of the velocity parallel to « is thus

1,2 sin 2%z ¢

™ v{k cosh ky cos By++/2.8 sinh ky sin (By—4m)—Fk e“ﬁl’}.

On account of the factor e™®, this quantity is insensible except when ky is extremely
small. 'We may therefore write it

ug? sin 2kx ¢ 7P

e {cos,@y—l—ﬁy(sinﬂy——cos,@y)-—-e“ﬁ’/} o (20),

V (equal to k/n) being the velocity of propagation of waves corresponding to & and n.

The only approximation employed in the derivation of (15) and (16) is the neglect
of the right hand member of (4), and the corresponding real values of u and v could if
necessary be readily exhibited without the use of a merely approximate value of %'.
To proceed further we must calculate the value of

v AV | v Ay \
v dz v dy (21)
in (4), for which it will be sufficient to take the values given by the first approxima-
tion. Thus

1d
VY = Vi, = " :Zl:g?
and by (17)
A na, cos kx e PV,
Efz—J—W sin (nt—1w—By),

from which we find as the value of (21),

Fu? sin 2kx e~ k . | :

-+ termsin 2nt.
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On account of the factor ¢~ this quantity is sensible only when ¥ is very small.
We may write it with sufficient approximation

nkuy? sin 2%z =P

13 y{—Bysin,By—cos,By-{-e“ﬁ’J} e (22).

The terms in 2n¢, corresponding to motions of half the original period, are not.
required for our purpose, which is to investigate the non-periodic motion of the second
order. The equation with which we have to proceed is found by equating (22) to v*y.
The solution will consist of two parts, one resulting from the direct integration of (22)
and involving the factor e, the second a complementary function with arbitrary
coefficients satisfying v*=0. In the calculation of the first part we may identify v*
with d*/dy*, on account of the smallness of £ relatively to 8. In this way our equation
becomes

dr  mkug? sin 2k e

diBy)t 423 { —PBy sin By— cos By+ @_By} o (29),

of which the solution is

nku,? sin 2kx e ™*

g% cos By-+hsin By+iBysin By+se | L (24),

The complementary function, being proportional to sin 2kx, may be written

P o0 21 (A Byt (A Bt

- If the fluid be uninterrupted by a free surface, or otherwise, within distances for
which ky is sensible, we must suppose (A’4-By)=0, so that by (13) the complementary

function may be written
w,” sin 2%z

T (A4By)e*.

The condition that v (equal to —dys/dx) must vanish when y=0, gives A=—13.
For the velocity parallel to « we have

uy? sin 2k,

u==——[¢™{— sin By—3 cos By—+}By cos By—iBy sin By—e~}
" + B le M {B—2k(A+By)} .

In order that » should vanish when y=0, we must have

B=2kA+38= 18— b =15,
approximately. Thus
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o
u:wgﬁlﬁ [e~#{ — sin By—1 cos By-+ 1By cos By—1By sin By—Fe ™}
e~ M{1—2ky}] . (25),
and
__2kuy® cos 2k

v= =" (e (G cos By} sin By-+By sin Byse ™)
+e—13+E8y}] - (20)

To obtain the mean velocity parallel to @ of a particle, we must add to (25), the
terms previously investigated and expressed by (20). If we call the total u’, we have

;e sin 2k

o lem = sin =3t e I—2k}] L (1),

At a short distance from the bottom ¢~ becomes insensible, and we have simply

2 o1 7
zo’:%%’——s%g@e‘%y(l—2ky). S L (28),
,  2kug®cos 2kx _
v:——*‘)—ﬁ—v—w62"y(—%% By). . . . . .. (29).

The steady motion expressed by (28) and (29) is of a very simple character. It
consists of a series of vortices periodic with respect to « in a distance $\. For a given
« the horizontal motion is of one sign near the bottom, and of the opposite sign at a
distance from it, the place of transition being at y=(2k)~'=MN/4w. The horizontal
motion of the first order near the bottom being by (18) u=w, cos kx cos nt, we see
that it is a maximum when kx=0, =, 27, ... If we call these places loops, and the.
places of minimum velocity nodes, (29) shows that v" is negative and a maximum at
the loops, positive and a maximum at the nodes. The fluid therefore rises from the
bottom over the nodes and falls back again over the loops, the horizontal motion near
the bottom being thus directed towards the nodes and from the loops. The maximum
horizontal motion is simply $u.*/V, and is independent of the value of v. We cannot,
therefore, avoid considering this motion by supposing the coeflicient of viscosity to be
very small, the maintenance of the vortices becoming easier in the same proportion as
the forces tending to produce the vortical motion diminish.

To ascertain the character of the motion quite close to the bottom, we must include
the terms in ™. When y is extremely small

w=udVlsin 2ke{—1By+ ...} . . . . . . . (30),

so that the motion is here in the opposite direction to that which prevails when e~
can be neglected.
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A few corresponding values of By and of —(sin By4-§e~™)e™®-+§ are annexed, in
order to show the distribution of velocities within the thin frictional layer.

By. By.

- -038 3r 055
16 - 8 +

a7 T )

3 —054 “ +°151
s 04 374
ic —040 4 +

T 3m

3 —-025 5 4384

It appears that (sin 2kx being positive) the velocity is negative from the plate out-
wards until By somewhat exceeds L, after which it is positive, until reversed by the
factor (1—2ky). The greatest negative velocity in the layer is about + of that which
is found at a little distance outside the layer.

FArADAY found that fine sand, scattered over the bottom, tended to collect at the
loops. This is in agreement with what the present calculation would lead us to
expect, provided that we can suppose that the sand is controlled by the layer at the
bottom whose motion is negative. The exceeding thinness of the layer, however, pre-
sents itself as a difficulty. The subject requires further experimental investigation ;
but in the meantime the following data may be worth notice, though in some respects,
e.g., the shallowness of the liquid in relation to the wave-length, the circumstances
differed materially from those assumed in the theoretical investigation.

The liquid was water (v="'014 C.G.8.), and the period of vibration was %, so that
n=2m X 15. The thickness of the layer

=7 4/%—’:-0135 centim,
4 n .

Measurements of the diameters of the particles of sand gave about ‘02 centim., so
that the grains would be almost wholly immersed in the negative layer, even if isolated.
It seems therefore that the observed motion to the loops gives rise in this case to no
difficulty. But it is possible that the behaviour of the sand is materially influenced
by the vertical motion of the vessel by which in these experiments the liquid vibra-
tions are maintained.*

§ 2. In the problem to which we now proceed the motion will be supposed to have
its origin in the assumed motion of a flexible plate situated when in equilibrium at
y=0. Thus for a first approximation we take u=0, v=1v, sin kz ¢, when y=0, and
the question is to investigate the resulting motion of the fluid in contact with the
plate. '

* See a paper “ On the Crispations of Fluid resting upon a Vibrating Support,” Phil. Mag., July, 1883.
MDCCCLXXXTIV. C



10 LORD RAYLEIGH ON THE CIRCULATION

The solution to a first approximation is readily obtained. As in (10), (11), we have

Y=y, =e" coskx(Ae W+4Ce™*r) . . . . . . (31),
in which we may take as before
, n . .
k:d—ﬂ-(1+z)=3(1+z) L B2
By the condition at y=0,
¥ Y
A=—, 0 C=pp
so that
vy coskx [ K _, ¥
Y= k:k-,-{_%ewe Lo (33),
int
uz%%{k'e“@—k'e""y}. Coe e (34).

In passing to real quantities it will be convenient to write

P, .
k—ok’=He R G 1))

Thus throwing away the imaginary parts of (33), (84), we get

Y= cos kw{ _:3\]0/26_@ cos (nt+et4m)4e= cos (nt+ e—By)} ... (806),
u=,/2.8 H cos kx {e"‘l’ cos (nt+e+tim)—e™? cos (nt+e+ %w—,@y)} . (37),

v=H sin kw{ —B+y/2 e cos (nt+e-+4m)+ke™ cos (nt+e—,8y)} .. (38).

From (32), (35), the approximate value of H is —v,/B84/2, and that of € is —}m.
More exact values will however be required later. We find

— % T
H= NI T B\/2<1+2/3>‘ Coo .. (39),
B—k 1 k
008 E_\/{(B—k)2+/32}_\/2<1 2['3). (40)

The values of w and v above expressed give u=0, v=1v, sin kx cos nt, when y=0.
This is sufficient for a first approximation, but in proceeding further we must remember
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that these prescribed velocities apply in strictness not to y=0, but to ;y=q-;b2 sin ko sin nt.

Substituting the latter value of y in the expressions (87), and (38), we find

u=,/2.8H cos kx {—ky cos (nt+e+41m)+4/2.8y cos (nt+4e-+4m) }

’3 Bl sin 2kx sin nt{ B\/Z —=cos (nt+e+44m)+ cos (nt-l—e+l1r)}
='82;;;H sin 2kac{ 3\70/2 sin (e447)— sin (e+3m) } + terms in 2nt.

The first term within the bracket is of the second order in k/B relatively to the
latter term, and may be omitted. Thus
B H

= —"—"=gin 2kx cos .
2n .

The terms in 2nt we need not further examine. From (39), (40), H cos e=—v,/28,
very approximately, so that we may write ‘ :

By’
u=z7—f—s1n2km. Coe e e .. (41).

To the same degree of approximation, v=1, sin kx cos nt, simply.
We have next, as in the first problem, to consider the complete equation

4 'wd‘l"z "’dg‘h
w=RTht T L@

in the right hand member of which we use the approximate values given by (86),
(37), (38). Thus

d;!;z_ —nH cos kx e sin (nt +e—By),

and (42) becomes

9l —By
V%____"”]“BH SZ;%M {e‘@ (—27’? sin By— sin By— cos By>+26‘5y} .. (43).

It will be found presently that the term divided by % disappears from the final
result, and thus we have to pursue the approximation further than might at first
appear necessary. We may however neglect terms of order k*/B% in comparison with

the principal term. Thus v* may be identified with = e and the equation becomes

c 2
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d* EH? sin 2% ¢ =P
¥ nkHsin 2 e {<2~B—1> sin By— cos By —2By sin :89+26—By} - (44),

Ay 4
whence
FH? sin 2kze ™™ [/ B : -
I=" s { (2 1) sin By cos B4y sin By ] L (49)
And
Ay nkH2sin2kze ™ [/ B i - ‘
Ty “TT—‘K 2% )S“lﬁy 03008 BY— 4By sin By +4By cos By—1e ”}(46)'

To obtain the value of u at the surface of the plate it will be sufficient to put y=0
in (46). Thus

—}........(47).

N

9zLH2 sin 2kz ﬁ
4y 262 J[ 2k
By (32), (39)

nkH? 7m;n ,° %
2B 2 <1+ > 2V<1+E>’
if as before we put V for k/n. Thus in (47)

2
u=1]°—<——’§———§-’>sin2/cw Ce e e (48).

To obtain the complete value of u at the surface of the plate, corresponding to (37),
(46), we have to add to (48) that given in (41). The term of lowest order disappears,
and we are left simply with

32
u=—wsm2kx R (TR

In like manner we find for the complete value of v at the surface of the plate
corresponding to (38), (45),

. 11v,% cos 2kx
v=vosmkmcosnt——°—8—-/§v—-—. N G10)

The values of » and v expressed in (49) and the second part of (50) must be can-
celled by a suitable choice of the complementary function, satisfying v*=0, so that
to the second order of approximation the fluid in contact with the plate may have no

relative motion.
The complementary function is

Y=(A+By)e*¥ sin 2k,

whence
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u={B—2k(A+By)}e™*¥ sin 2k,
v=—2k(A+By)e~*¥ cos 2k.

Determining the constants as indicated above we get

2
u,=3§—v‘°7 (L—2ky)e ™ sin 2k . . . . . . . . (31),
Ry -2 eos Ok 5
=—gav (114+68y)e~cos 2k . . . . . . (52)

The velocities given by (51), (52) are the only part of the motion of the second
order which is sensible beyond a very small distance from the vibrating plate. The
nodes of the plate (where sand would collect) are at the points given by kx=0, =, 2= ...,
and the loops at the points kx=4m, 27w ... At the former points v is negative, and at
the latter positive. For kx=1Jm, u is positive, and for kx=3%n, u is negative.

=

0 X T S
node loop node loop

The magnitude of the vortical motion is independent of the coefficient of friction.

The complete value of 4 to the second order of approximation (except the terms in
2nt) is obtained by adding together (87), (46), and (51), and it will contain the term
divided by % in (46), whose appearance, however, is misleading. The objectionable
term will be got rid of, if we express the mean velocity of a particle, instead of as in
(46), the mean velocity at a point. For this purpose we are to add to (46), (51), the
mean value of

du du
3 e dy

as calculated from the first approximation where

= judt, n= Ivdt.

. du .
As in the former problem the mean value of ¢ j; is zero.

Multiplying together % , and Ivdt as found from (87), (88), and rejecting the terms

in 2nt, we get with omission of %
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%8*H2e~" sin 2% .
M in m{zﬁk(l—ky)(smﬂy—cosBy)+%e‘ﬁy}. C .. (59),

in which we may write

e i
n . nB T 4R

Combining (53), (46), and (51), we get finally

, k%P sin 2ka . 8 =gy 3v,? oy
ST E— ] —2.0FY -0 — —ky
u 473 { 2 sin By—je }+ 8V(1 2ky)e~# sin 2kx
2 qj ke . .
:"0 S;I%?_ﬁ{ _g-'ﬂy(z sin By+£e"3y)+%(1—2ky)e‘2"3’} oL, (54)’

which expresses the mean particle velocity.
When By is very small, (54) gives

, P sin 2ka

U—T(—%ﬂy—!—) e e e e e e (55)

from which it appears that quite close to the plate the mean velocity is in the
opposite direction to that which is found outside the frictional layer.

§ 8. In the third problem, relating to KuNpT’s tubes, the fluld must be treated as
compressible, as the motion is supposed to be approximately in one dimension, parallel
(say) to x. The solution to a first approximation is merely an adaptation to two
dimensions of the corresponding solution for a tube of revolution by KircHHOFF,*
simplified by the neglect of the terms relating to the development and conduction
of heat. It is probable that the solution to the second order would be practicable
also for a tube of revolution, but for the sake of simplicity I have adhered to the
case of two dimensions. The most important point in which the two problems are
likely to differ can be investigated very simply, without a complete solution.

If we suppose p=a’p, and write o for log p— log p,, the fundamental equations
are

do du A du d [du  dv
g0 @ ow G 2 oo, ov
@ = vdy—l—vv u+vdw<d.z'+dy>' ... (56),

with a corresponding equation for v, and the equation of continuity,

du  dv  do do do

* Po¢e. Ann., t. exxxiv., 1868.
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Whatever may be the actual values of » and v, we may write

_dp Ay d$_dy
V= Tay Tay T d
in which
du  dv i
2 h— ) 7 Qe
Vo=rta V=4

From (56), (57),

d\ do duw dw du d [ do do
gy o\ __ oY % g%, 2y 2
(a +v dt>d.z'_ 57 +v viu Uy =0 de<u ' +v ) .

ad\do dv 1
2 Gt I i 20y e 97— e = hit —
(O& +th>dy_ dt+VV v ul vdg/ v <u Z”+v > .

Again from (60), (61),

d . ,d dFo [ do, do » do  do
oy, Y O\ YT [ P, LT\ _ N2 (0,5 22
("‘ +”dt+”dt>v TT e dt <udx +”dy> vtV <“ dw'*'”dy)

dfdn by i ds
da\" dx vdg/ dy Y

15

(58),
(59).
(60),

(61).

dv
+v@> (62).

For the first approximatiori the terms of the second order in u, v, and o are to
be omitted. If we assume that as functions of ¢, all the periodic quantities are

proportional to ™, and write ¢ for a?4-nv+4-inv’, (62) becomes

qv%—-l—n%—:O .
Now by (57), (59),
Vi¢=—inoc=1 %Vzo',
so that
7 s
¢—7'n i
and
igde Ay igde_dy
nde dy’ ndy do

(63).

(64).

Substituting in (60), (61), with omission of terms of the second order, we get in

view of (63),

N | -y
(vwP—1in) 8—‘5: 0, ('VVQ—Zn)—d;= 0,

* Tt is unnecessary to add a complementary function ¢, satisfying ©%¢'=0, as the motion corre-

sponding thereto may be regarded as covered by V.
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whence
(pwP=inyy=0 . . . . . . . . . . (65).

If we eliminate o directly from the fundamental equations (56), we get

(v = )= o) = e+ o)

d i AR A
<dx+dy> Wbu T e (66)

If we now agsume that as functions of = the quantities o, ¥, &c., are proportional
to €™, equations (63), (65) may be written

d? n?
—k"?)o=0, where F?=k——. . . . . . (67),
d1~ q
. @ 72 W= here £2=J2 in
P $¥=0, where £°= —I—;. .. . . . (68).

If the origin for ¥ be in the middle between the two parallel boundaries, o must be
an even function of ¥, and ¥ must be an odd function. Thus we may write

a=A cosh £"y. ¢ ¢, =Bsinh ky. e e . . . . (69),
Y

u= < —-%‘(ZA cosh ”y+k B sinh k’y)cf'”f et
(70).

_ (7”;9 A sinh ¥’y —ikB sinh lc'y)ef‘nf ke

If the fixed walls are situated at y=-,, » and » must vanish for these values of #.
Eliminating from (70) the ratio of A to B, we get as the equation for determining £,

K tanh Koy, =Kk tanh k79 . . . . . . . . (T1),

in which ¥, & are given as functions of % by (67), (68). We now introduce further
approximations dependent upon the assumption that the direct influence of friction
extends through a layer whose thickness is a small fraction only of ;. On this suppo-
sition &’ is large, and &” is small, so that we may put tanh ¥y, =41, tanh &y, =4-£"y,.
HEquation (71) then becomes

B=kt%,. . . . . . . . . . . (72),
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or if we introduce the values of ¥, &” from (67), (68),
kz___<kz_7f> ?/1«/<k2+@>
q v
Since n/v is great, k2:7—§=§ approximately.
Thus |
2 R P 1
B=" 4+ = Z L,
A/ () { v \/?}
1—i
k=i§I1+~—1% R ()]
L 21 «/ >

«/11 v
2n | 2n

n n
791',—_'21:; {]-'F o j, kz-——:FE %

and

If we write k=k,+k,,

(74),

which agrees with the result given in §347 (11) of my book on the Theory of Sound.

In taking approximate forms for (70), we must distinguish which half of the
symmetrical motion we contemplate. If we choose that for which y is negative, we
replace cosh Ky and sinh £y by }e™*. For cosh &”y we may write unity, and for
sinh &y simply k”y. If we change the arbitrary multiplier so that the maximum
value of u is unity, we have

w=(— 14 e~Fo+9)gilegint

1,:%(;1 + e—k(y+y.)> ok gint (75),
in which, of course,  and v vanish when y=—y,.
If in (75) we change k£ into —k, and then take the mean, we obtain
u=(—1+4¢"*¥*) cos kx e
v= "%}(i‘l-e“”'@*?ﬁ) sin kx e (76).

Although £ is not absolutely a real quantity, we may consider it to be so with
sufficient approximation for our purpose. If we write as before

¥=a/ <2ﬁv>.(1+i)=/3(1+¢),

MDCCCLXXXIV. D
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we get from (76) in terms of real quantities

u= cos k[ — cos nt+4ePv* cos {nt—B(y+y,)} ]
(77).

r=— ij 75 sin /cm[ cos (nt —1m)+4e~Pur9 cos {nt—Im—B(y+v,)} }

It will shorten the expressions with which we have to deal if we measure y from
the wall (on the negative side) instead of as hitherto from the plane of symmetry, for
which purpose we must write y for y4y,. Thus

u= cos kax{— cos nt+¢~P cos (nt—pPBy)}

78).
k;:;];x{ m Y cos (nt—im)—e " cos (nt—tmr— By)} (78)
From (78) approximately
vA=B,/2. cos ka: ePsin (nt—ta—By) . . . . . . (79),
du g—?—) =ksinkxcosnt. . . . . . . . . (80),
V 1lr—[—-wdv \Ir—lL,B sin 2kx e~ — cos By+e¢~)+ terms in 2nt . . (81),
<i§;& > = —1kBsin 2kx e=*(sin By + cos By)+terms in 2n¢ R (82).

As in former problems the periodic terms in 2n¢ will be omitted. For the non-
periodic part of ¢ of the second order, we have from (66)

V‘i‘t[;:—]i'g—sin 2k e~ {sin By+43 cos By—2¢~P} . . . . (83).

In this we identify v* with “Z/]’ so that

i —8,
Pt in By S cos By be ) . L . (80,

to which must be added a complementary function, satisfying v%=0, of the form

sin 2k

Y= 1605 {A sinh 2k(y, —y)+B(y,—v) cosh 2k(y;—v)} . . . (85),
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or as we may take it approximately, if ¥, be small compared with the wave-length X,

ke sin 2kx
PR A =) B - - (86)

The value of o to a second approximation would have to be investigated by means
of (62). It will be composed of two parts, the first independent of ¢, the second a
harmonic function of 2nt. In calculating the part of de/dx independent of ¢ from

- do do do
2 Pt i
vi¢= it Vi vdy

we shall obtain nothing from do/dt.  In the remaining terms on the right-hand side it
will be sufficient; to employ the values of u, v, o of the first approximation. From

do duw dv

it dw dy
in conjunction with (80), we get
o= —2 gin k sin nt,
a
whence
A kul .
= cos® kx e sin By.
By~ 208" By

It is easily seen from this that the part of u resulting from d¢/dx is of order 23?in
comparison with the part (87) resulting from ¢, and may be omitted.
Accordingly by (84), with introduction of the value of B and (in order to restore
homogeneity) of %2 '
ue*sin 2kx =Py

u=—-t———{4sin By+2cos By+e}. . . . . . (87),
== Méz_zm{ sin By+3 cos By+4e} . . ... (88);
and from (86)
y—— M{A’+3B(yl—y) L @),
2k 2k ’
v=— “08/‘;‘;8 T - T N (1))

When y=0, the complete values of « and v, as given by the four last equations,
must vanish. Determining in this way the arbitrary constants A’ and B’, we get as
the complete values at any point,

D 2
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2%k
U e Q_‘f)__sgl;_f{ e™P(4 sin By+2 cos 3y+ e~fr) -3 9(?/11/12@ } .. (o),
2ku? cos 2kx . : =)’
e 2 008 28 82?05 {c“‘sy(sm By~+3 cos By+4e~*)+3B(1h—y) "%B(ylylgy) } (92).

Outside the thin film of air 1mmed1ate1y influenced by the friction we may put
¢™?=0, and then

_ 3Bu,’sin 2k» (i, —y)*

U= = {1_3—~——y12 } N C 1)
3u*2k cos 2kx o —n®

== e e

From (93) we see that v changes sign as we pass from the boundary y=0 to the

plane of symmetry y=yv,, the critical value of y being y,(1—4/3), or 423 y,.

The principal motion being u=—u, cos kx cos nt, the loops correspond to kx=0, =,
2m, . . ., and the nodes correspond to 4, 47,... Thus v is positive at the nodes and
negative at the loops, vanishing of course in either case both at the wall y=0, and at

the plane of symmetry y=y,.

Plane of symmetry

—_— i —
Wall - i ~
0 i T 3
loop  node loop node

STETE

To obtain the mean velocities of the particles parallel to 2, we must make an addition

to u, as in the former problems.
In the present case the mean value of

dn _ 2gin Qe PV [ _

so that
u’=-—z—&9~i§§f——@{e‘ﬁy(4 sin,By+3e‘Bl’)+%—%@ly—~_}y)2} .o (95).
‘When By is small,
u’:—%i%g@{—2,8y+...} N (1))

Inside the frictional layer the motion is in the same direction as just beyond it.
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We have seen that the width of the direct current along the wall is '423 y,, and
that of the return current (measured up to the plane of symmetry) is *577 ¥, so that
the direct current is distinctly narrower than the return current. This will be still
more the case in a tube of circular section. The point under consideration depends
only upon a complementary function analogous to (86), and is so simple that it may
be worth while to investigate it.

The equation for ¢ is
@ 1d 2
<ﬁ_; %—4702) !’b=0 . . . . . . . . . (97),

but if we suppose that the radius of the tube is small in comparison with \, #* may be
omitted. The general solution is

Y={A4+Br?+Br?logr4-Crt}sin2kx . . . . . . (98),
so that

u=" = (9B B(2logr+1)+4Cr*} sin 2ka,
whence B'=0, by the condition at r=0. Again

p= i —2k{ Ar~14Br+4Cr®} cos 2k,
whence A=0. ‘
We may take therefore
u={2B~44Cr?*} sin 2kx }

v=—2k{Br+Cr’} cos 2kx (99)

If v=0, When r=R, B+4CR?*=0, and

u=2C(2r"—R¥)sin2kx . . . . . . . . (100)

Thus % vanishes, when
R .
’l"="\7§= ‘707 R, R—r="293 R.

The direct current is thus limited to an annulus of thickness ‘293 R, the return
current occupying the whole interior, and having therefore a diameter of

2X°707 R=1'414 R.



